(Uniform) convergence of twisted ergodic averages
نویسندگان
چکیده
منابع مشابه
Convergence of Diagonal Ergodic Averages
The case l = 1 is the mean ergodic theorem, and the result can be viewed as a generalization of that theorem. The l = 2 case was proven by Conze and Lesigne [Conze and Lesigne, 1984], and various special cases for higher l have been shown by Zhang [Zhang, 1996], Frantzikinakis and Kra [Frantzikinakis and Kra, 2005], Lesigne [Lesigne, 1993], and Host and Kra [Host and Kra, 2005]. Tao’s argument ...
متن کاملPointwise Convergence of Some Multiple Ergodic Averages
We show that for every ergodic system (X, μ,T1, . . . ,Td) with commuting transformations, the average 1 Nd+1 ∑ 0≤n1,...,nd≤N−1 ∑ 0≤n≤N−1 f1(T n 1 d ∏ j=1 T n j j x) f2(T n 2 d ∏ j=1 T n j j x) · · · fd(T n d d ∏ j=1 T n j j x). converges for μ-a.e. x ∈ X as N → ∞. If X is distal, we prove that the average 1 N N ∑ i=0 f1(T n 1 x) f2(T n 2 x) · · · fd(T n d x) converges for μ-a.e. x ∈ X as N → ∞...
متن کاملConvergence of weighted polynomial multiple ergodic averages
In this article we study weighted polynomial multiple ergodic averages. A sequence of weights is called universally good if any polynomial multiple ergodic average with this sequence of weights converges in L. We find a necessary condition and show that for any bounded measurable function φ on an ergodic system, the sequence φ(Tnx) is universally good for almost every x. The linear case was cov...
متن کاملPowers of sequences and convergence of ergodic averages
A sequence (sn) of integers is good for the mean ergodic theorem if for each invertible measure preserving system (X, B, µ, T) and any bounded measurable function f , the averages 1 N P N n=1 f (T sn x) converge in the L 2 (µ) norm. We construct a sequence (sn) that is good for the mean ergodic theorem, but the sequence (s 2 n) is not. Furthermore, we show that for any set of bad exponents B, t...
متن کاملShift-coupling and convergence rates of ergodic averages
We study convergence of Markov chains {Xk} to their stationary distributions π(·). Much recent work has used coupling to get quantitative bounds on the total variation distance between the law L(Xn) and π(·). In this paper, we use shift-coupling to get quantitative bounds on the total variation distance between the ergodic average law 1 n n ∑ k=1 L(Xk) and π(·). This avoids certain problems, re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Ergodic Theory and Dynamical Systems
سال: 2015
ISSN: 0143-3857,1469-4417
DOI: 10.1017/etds.2015.6